Taylor series (lecture notes)
 Arkady M. Alt

For any function f which has continuous derivative of order n on the segment $[c, d]$ and derivative of order $n+1$ on (c, d) and for any $a \in(c, d)$ we will definepolynomial $T_{n}(f ; a)(x):=f(a)+\sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} x^{k}$ which we call Taylor's Polynomial for function f with node $a\left(\operatorname{deg} T_{n}(f ; a)(x) \leq n\right.$ if T_{n} isn't zero polynomial).
So, we have the correspondence $(f, n, a) \mapsto T_{n}(f ; a)(x)$.
If f infinitely times differentiable then we get the infinite sequence of Taylor's polynomials:
$T_{0}(f ; a)(x)=f(a), T_{1}(f ; a)(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a), T_{2}(f ; a)(x)=$
$f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}, \ldots$,
$T_{n}(f ; a)(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{\left.f^{(n}\right)(a)}{n!}(x-a)^{n}, \ldots$.
where $T_{n}(f ; a)(x)$ can be considered as partial sum of the series
(infinite formal sum) $T(f ; a)(x):=f(a)+\sum_{n=1}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=$
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ (here $\left.f^{(0)}(a)=f(a)\right)$ which we call Taylor series
for function f and point a.
Now the two natural questions:

1. What is condition of convergence of this series;
2. When this infinite sum equal to $f(x)$ (in the case of convergence).

Let $r_{n}(x):=f(x)-T_{n}(f ; a)(x)$.If $\lim _{n \rightarrow \infty} r_{n}(x)=0$ then $T(f ; a)(x)$ convergence
to $f(x)$, that is $f(x)=\lim _{n \rightarrow \infty} T_{n}(f ; a)(x)=T(f ; a)(x)$.
In the supposition that f is function which has continuous derivative of order n on the segment $[c, d]$ and derivative of order $n+1$ on (c, d) we
obtain $r_{n}^{(m)}(a)=0$ for any $m=1,2, . ., n$.
Indeed, since $r_{n}^{(m)}(x)=f^{(m)}(x)-\left(T_{n}(f ; a)(x)\right)^{(m)}=$
$f^{(m)}(x)-\frac{f^{(m)}(a)}{m!} \cdot m!-(x-a) \sum_{k=m+1}^{n}\left(\frac{f^{(k 1)}(a)}{k!} \cdot k(k-1) \ldots(k-m+1)(x-a)^{k-1}\right) \Longrightarrow$
$r_{n}^{(m)}(a)=0$ for any $m=0,1,, 2 \ldots, n$.

Definition.

Let $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ then if $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$ we say that $f(x)$ in the point a has order of smallness bigger the $g(x)$ and write down that as follows $f(x)=o(g(x))$.
In particular $f(x)=o\left((x-a)^{n}\right)$ if $\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n}}=0$.
Obvious that:

1. $c \cdot o\left((x-a)^{n}\right)=o(g(x))$ for any constant c;
2. $\frac{o\left((x-a)^{n}\right)}{(x-a)^{k}}=o\left((x-a)^{n-k}\right)$, for any $k=1,2, \ldots, n-1$ and if $k=n$ then $\frac{o\left((x-a)^{n}\right)}{(x-a)^{n}}=o(1) \quad\left(f(x)=o(1) \Longleftrightarrow \lim _{x \rightarrow a} f(x)=0\right)$;
3. $(x-a)^{k} o\left((x-a)^{n}\right)=o\left((x-a)^{n+k}\right)$ for any $k \in \mathbb{N}$.
4. $o\left((x-a)^{n}\right)+o\left((x-a)^{m}\right)=o\left((x-a)^{\min \{n, m\}}\right)$.

Lemma 1 .

Let f differentiable of order $n-1$ in any $x \in(a-\varepsilon, a+\varepsilon)$ for some ε and has derivative of order n in the point a and $f^{(n)}(x)$ is continuous in a.
Then $f(x)=o\left((x-a)^{n}\right)$ iff $f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=0$.
Proof (by Math Induction).

Sufficiency

1. Base of MI.

Let $n=1$. Since tby Mean Value Theorem there is

$$
c_{x} \in \overline{(a, x)} \quad\left(\overline{(a, x)}=\left\{\begin{array}{l}
(a, x) \text { if } x>a \\
(x, a) \text { if } x>a
\end{array}\right)\right.
$$

such that $\frac{f(x)}{x-a}=\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(c_{x}\right)$ and $\lim _{x \rightarrow a} c_{x}=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{x-a}=\lim _{x \rightarrow a} f^{\prime}\left(c_{x}\right)=f^{\prime}\left(\lim _{x \rightarrow a} c_{x}\right)=f^{\prime}(a)=0
$$

(because f^{\prime} is continuous in $\left.a\right)$. Thus, $f(x)=o((x-a))$.

2. Step of MI.

Let $f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=f^{(n+1)}(a)=0$ and $f^{(n+1)}(x)$ is continuous in a.And let $g(x):=f^{\prime}(x)$. Then

$$
f^{\prime}(a)=\ldots=f^{(n)}(a)=f^{(n+1)}(a)=0 \Longleftrightarrow g(a)=g^{\prime}(a)=\ldots=g^{(n)}(a)=0
$$

and by supposition of MI we have $g(x)=o\left((x-a)^{n}\right)$, i.e.

$$
\lim _{x \rightarrow a} \frac{g(x)}{(x-a)^{n}}=0
$$

Hence, $\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n+1}}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \frac{1}{(x-a)^{n}}=\lim _{x \rightarrow a} f^{\prime}\left(c_{x}\right) \cdot \frac{1}{(x-a)^{n}}=$ $\lim _{x \rightarrow a}\left(\frac{f^{\prime}\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}} \cdot \frac{\left(c_{x}-a\right)^{n}}{(x-a)^{n}}\right)=\lim _{x \rightarrow a}\left(\frac{g\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}} \cdot\left(\frac{c_{x}-a}{x-a}\right)^{n}\right)=0$
because $\lim _{x \rightarrow a} c_{x}=0 \Longrightarrow \lim _{x \rightarrow a} \frac{g\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}}=\lim _{c_{x} \rightarrow a} \frac{g\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}}=0$ and $\left|\frac{c_{x}-a}{x-a}\right|<1$. So, $\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n+1}}=0$.

Necessity.

Let $n \in \mathbb{N}$ and $f(x)=o\left((x-a)^{n}\right)$. Obviously that $f(a)=0$ and
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)}{x-a}=\lim _{x \rightarrow a} \frac{o\left((x-a)^{n}\right)}{x-a}=\lim _{x \rightarrow a} o\left((x-a)^{n-1}\right)=0$.
Since $r_{n}(a)=r_{n}^{\prime}(a)=\ldots=r_{n}^{(n)}(a)=0$ then $r_{n}(x)=o\left((x-a)^{n}\right)$ and we obtain
$o\left((x-a)^{n}\right)=f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{\left.f^{(n}\right)(a)}{n!}(x-a)^{n}+r_{n}(x) \Longleftrightarrow$
(1) $f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{\left.f^{(n}\right)(a)}{n!}(x-a)^{n}=o\left((x-a)^{n}\right)-r_{n}(x)=o\left((x-a)^{n}\right)$

Passing in (1) to the limit when $x \rightarrow a$ we obtain $f(a)=0$.
Then

$$
\frac{f^{\prime}(a)}{1!}+\frac{f^{\prime \prime}(a)}{2!}(x-a)+\ldots+\frac{\left.f^{(n}\right)(a)}{n!}(x-a)^{n-1}=\frac{o\left((x-a)^{n}\right)}{x-a}=o\left((x-a)^{n-1}\right) \Longrightarrow f^{\prime}(a)=0
$$

and so on \ldots For any $k<n$ assuming $f(a)=f^{\prime}(a)=\ldots=f^{(k)}(a)=0$
$\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}+\ldots+\frac{\left.f^{(n}\right)(a)}{n!}(x-a)^{n}=o\left((x-a)^{n}\right) \Longleftrightarrow$
$\frac{f^{(k+1)}(a)}{(k+1)!}+\ldots+\frac{\left.f^{(n-k-1}\right)(a)}{n!}(x-a)^{n}=o\left((x-a)^{n-k-1}\right) \Longrightarrow f^{(k+1)}(a)=0$.
Let f infinitely times differentiable in a. Then $f^{(n)}(x)$ is continuous in a for any $n \in \mathbb{N}$ and now we can apply this Lemma to

$$
r_{n}(x)=f(x)-T_{n}(f ; a)(x) \text { and obtain } r_{n}(x)=o\left((x-a)^{n}\right)
$$

Thus, in that case $f(x)=T_{n}(f ; a)(x)+o\left((x-a)^{n}\right)$.(It is Polynomial Taylor representation of $f(x)$ with error in Peano form or, shortly Peano form of Taylor representation for $f(x))$.

Corollary from Lemma 1 .

Let f differentiable of order $n-1$ in any $x \in(a-\varepsilon, a+\varepsilon)$ for some ε and has derivative of order n in the point a and $f^{(n)}(x)$ is continuous in a.
Then function $g(x)$, such that $g(x)$ is continuous on $(a-\varepsilon, a+\varepsilon)$ and
$f(x)=(x-a)^{n} g(x)$ holds in $(a-\varepsilon, a+\varepsilon)$ exists iff $f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=0$.

Proof.

Sufficiency
Let $f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=0$ and let $g(x):=\left\{\begin{array}{c}\frac{f(x)}{(x-a)^{n}}, x \neq a \\ 0 \text { if } x=a\end{array}\right.$.

Since $\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n}}=0$ then $g(x)$ defined by such way is continuous in a.

Necessity.

let $f(x)=(x-a)^{n} g(x)$, where g is continuous in a.Then

$$
f(x)=(x-a)^{n} g(x) \Longleftrightarrow \frac{f(x)}{(x-a)^{n}}=g(x) \Longrightarrow
$$

$\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n}}=0 \Longleftrightarrow f(x)=o\left((x-a)^{n}\right) \Longrightarrow f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=0$.
Since $\lim _{x \rightarrow a} \frac{r_{n}(x)}{(x-a)^{n}}=0$ then for any $\varepsilon>0$ there is $0<\delta<1$ such that for any $x \in(a-\delta, a+\delta)$ we have $\left|\frac{r_{n}(x)}{(x-a)^{n}}\right|<\varepsilon \Longleftrightarrow\left|r_{n}(x)\right|<\varepsilon \delta^{n} \Longrightarrow$ $\lim _{n \rightarrow \infty} r_{n}(x)=0$ and, therefore,

$$
\lim _{n \rightarrow \infty} T_{n}(f ; a)(x)=f(x) \Longleftrightarrow f(x)=T(f ; a)(x)
$$

for any $x \in(a-\delta, a+\delta)$.
Peano form wery convenient for finding limits, but more information of error $r_{n}(x)$ give Lagrange form.
Let $f(x)$ has on $[p, q]$ continuous derivative of order n and derivative of order $n+1$ on interval (p, q).
For fixed $x \in(p, q)$ and any $t \in(p, q)$ we will find constant K
(not depends from t) such that

$$
r_{n}(x)=f(t)-T_{n}(f ; a)(t)=K(x-a)^{n+1}, \text { that is } K:=\frac{r_{n}(x)}{(x-a)^{n+1}}
$$

Then for any $t \in(p, q)$ denote $\varphi(t):=f(t)-T_{n}(f ; a)(t)-K(t-a)^{n+1}$, which obviously $n+1$ time differentiable on (p, q) we have
$\varphi(a)=\varphi^{\prime}(a)=\ldots=\varphi^{(n)}(a)=0$ and $\varphi(x)=0$ by definition of K.
Since $\varphi(a)=\varphi(x)=0$ then by Roll Theorem there is $c_{1} \in \overline{(a, x)}$ such that $\varphi^{\prime}\left(c_{0}\right)=0$.
Then again by Roll Theorem there is $c_{2} \in \overline{\left(a, c_{1}\right)} \subset \overline{(a, x)}$ such that

$$
\varphi^{\prime \prime}\left(c_{2}\right)=0
$$

Assume that we already has $c_{k} \in \overline{(a, x)}$ such that $\varphi^{(k)}\left(c_{k}\right)=0, k<n$.
Then, since $\varphi^{(k)}\left(c_{k}\right)=\varphi^{(k)}(a)=0$ we obtain by Roll Theorem
$\varphi^{(k+1)}\left(c_{k+1}\right)=0$ for some $c_{k+1} \in \overline{\left(a, c_{k}\right)} \subset \overline{(a, x)}$.
Thus we finally obtain $\varphi^{(n)}\left(c_{n}\right)=\varphi^{(n)}(a)=0$ and, therefore, by
Roll Theorem there is $c_{n+1} \in \overline{\left(a, c_{n}\right)} \subset \overline{(a, x)}$ such that

$$
\begin{gathered}
\varphi^{(n+1)}\left(c_{n+1}\right)=0 \Longleftrightarrow f^{(n+1)}\left(c_{n+1}\right)-\left(T_{n}(f ; a)\right)^{(n+1)}\left(c_{n+1}\right)-K\left((t-a)^{n+1}\right)^{(n+1)}=0 \Longleftrightarrow \\
f^{(n+1)}\left(c_{n+1}\right)-K(n+1)!=0 \Longleftrightarrow K=\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!}
\end{gathered}
$$

Since $c_{n+1} \in \overline{(a, x)}$ then denoting $\theta:=\frac{c_{n+1}-a}{x-a} \in(0,1)$ we obtain
$c_{n+1}=a(1-t)+x t=a+\theta(x-a)$.
Hence, $K=\frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}, \theta \in(0,1)$ and, therefore,

$$
r_{n}(x)=\frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1} \Longleftrightarrow f(x)=T_{n}(f ; a)(x)+\frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1}
$$

(Polynomial Taylor fepresentation of $f(x)$ with error in Lagrange form).
Denoting $h:=x-a$ we we obtain another form of Taylor representation for f, namely,

$$
f(a+h)=\sum_{k=0}^{n} f^{(k)}(a) h^{k}+\frac{f^{(n+1)}(a+\theta h)}{(n+1)!} h^{n+1}
$$

If $M:=\sup _{x \in(p, q)}\left|f^{(n+1)}(x)\right|$ then for any $x \in(p, q)$ we have

$$
\left|r_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Deriving Taylor formula with error $r_{n}(x)$ integral form

(using integration by parts):
By Newton-Leybnitz formula $f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d t=\left[\begin{array}{c}u^{\prime}=-1 ; u=x-t \\ v=-f^{\prime}(t) ; v^{\prime}=-f^{(2)}(t)\end{array}\right]=$
$\left(-f^{\prime}(t)(x-t)\right)_{a}^{x}+\int_{a}^{x}(x-t) f^{(2)}(t) d t=f^{\prime}(a)(x-a)+\int_{a}^{x}(x-t) f^{(2)}(t) d t=$
$\left[\begin{array}{c}u^{\prime}=-(x-t) ; u=\frac{(x-t)^{2}}{2} \\ v=-f^{(2)}(t) ; v^{\prime}=-f^{(3)}(t)\end{array}\right]=f^{\prime}(a)(x-a)+\left(-f^{(2)}(t) \frac{(x-t)^{2}}{2!}\right)_{a}^{x}+$
$\frac{1}{2!} \int_{a}^{x}(x-t)^{2} f^{(3)}(t) d t=f^{\prime}(a)(x-a)+f^{(2)}(a) \frac{(x-a)^{2}}{2!}+\frac{1}{2!} \int_{a}^{x}(x-t)^{2} f^{(3)}(t) d t$.
Assume that we already have
$f(x)-f(a)=f^{\prime}(a)(x-a)+f^{(2)}(a) \frac{(x-a)^{2}}{2!}+\ldots+f^{(k)}(a) \frac{(x-a)^{k}}{k!}+$
$\frac{1}{k!} \int_{a}^{x}(x-t)^{k} f^{(k+1)}(t) d t$
then using ntegration by parts again we obtain

$$
\begin{aligned}
& \int_{a}^{x}(x-t)^{k} f^{(k+1)}(t) d t=\left[\begin{array}{c}
u^{\prime}=-(x-t)^{k} ; u=\frac{(x-t)^{k+1}}{k+1} \\
v=-f^{(k+1)}(t) ; v^{\prime}=-f^{(k+2)}(t)
\end{array}\right]= \\
& \left(-f^{(k+1)}(t) \frac{(x-t)^{k+1}}{k+1}\right)_{a}^{x}+\frac{1}{k+1} \int_{a}^{x}(x-t)^{k+1} f^{(k+2)}(t) d t=f^{(k+1)}(a) \frac{(x-a)^{k+1}}{k+1}+ \\
& \frac{1}{k+1} \int_{a}^{x}(x-t)^{k+1} f^{(k+2)}(t) d t . \\
& \text { Hence, }
\end{aligned}
$$

$f(x)-f(a)=f^{\prime}(a)(x-a)+f^{(2)}(a) \frac{(x-a)^{2}}{2!}+\ldots+f^{(k)}(a) \frac{(x-a)^{k}}{k!}+$
$f^{(k+1)}(a) \frac{(x-a)^{k+1}}{(k+1)!}+\frac{1}{(k+1)!} \int_{a}^{x}(x-t)^{k+1} f^{(k+2)}(t) d t$.
For $k=n$ we obtain

$$
\begin{aligned}
& \quad f(x)=f(a)+f^{\prime}(a)(x-a)+f^{(2)}(a) \frac{(x-a)^{2}}{2!}+\ldots+f^{(n)}(a) \frac{(x-a)^{n}}{n!}+ \\
& \frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t= \\
& \quad T_{n}(f ; a)(x)+\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t
\end{aligned}
$$

So, $r_{n}(x)=\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t$.
Using integral Mean Value Theorem we obtain

$$
\int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t=f^{(n+1)}(c) \int_{a}^{x}(x-t)^{n} d t=f^{(n+1)}(c) \frac{(x-a)^{n+1}}{n+1}
$$

for some $c \in \overline{(a, x)}$.
Therefore, $f(x)=T_{n}(f ; a)(x)+\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$.

Lemma 2.

If $a_{0}+a_{1}(x-a)+\ldots+a_{n}(x-a)^{n}=o\left((x-a)^{n}\right)$ then $a_{0}=a_{1}=\ldots a_{n}=0$.

Proof.

$$
\lim _{x \rightarrow a}\left(a_{0}+a_{1}(x-a)+\ldots+a_{n}(x-a)^{n}\right)=\lim _{x \rightarrow a} o\left((x-a)^{n}\right)=0 \Longrightarrow a_{0}=0
$$

Let $k<n$. Assuming $a_{0}=a_{1}=\ldots a_{k}=0$ we obtain
$a_{k+1}(x-a)^{k+1}+\ldots+a_{n}(x-a)^{n}=o\left((x-a)^{n}\right) \Longleftrightarrow$
$a_{k+1}+a_{k+2}(x-a)+\ldots+a_{n}(x-a)^{n-k+1}=o\left((x-a)^{n-k+1}\right) \Longrightarrow a_{k+1}=0$.
Hence, by MI we proved $a_{0}=a_{1}=\ldots a_{n}=0$.

Corollary1.

If

$$
\begin{aligned}
& a_{0}+a_{1}(x-a)+\ldots+a_{n}(x-a)^{n}+o\left((x-a)^{n}\right)=b_{0}+b_{1}(x-a)+\ldots+b_{n}(x-a)^{n}+o\left((x-a)^{n}\right) \\
& \quad \text { then } a_{k}=b_{k}, k=1,2, \ldots, n .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& a_{0}+a_{1}(x-a)+\ldots+a_{n}(x-a)^{n}+o\left((x-a)^{n}\right)=b_{0}+b_{1}(x-a)+\ldots+b_{n}(x-a)^{n}+o\left((x-a)^{n}\right) \Longleftrightarrow \\
& \left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right)(x-a)+\ldots+\left(a_{n}-b_{n}\right)(x-a)^{n}=o\left((x-a)^{n}\right) \Longrightarrow a_{k}=b_{k}, k=1,2, \ldots, n .
\end{aligned}
$$

Corollary 2.

If $f(x)=a_{0}+a_{1}(x-a)+\ldots+a_{n}(x-a)^{n}+o\left((x-a)^{n}\right)$ then $a_{k}=\frac{f^{(k)}}{k!}, k=1,2, \ldots, n$.

Proof.

Follow fom Corollary1 and Taylor Representation for $f(x)$ in Peano form.

Applications.

I. Taylor representation for some elementary functions.
a) Let $f(x)=e^{x}$. Since $f(0)=1$ and $f^{(n)}(x)=e^{x} \Longrightarrow f^{(n)}(0)=1, n \in$ \mathbb{N} then
$e^{x}=1+\sum_{k=1}^{n} \frac{x^{k}}{k!}+r_{n}(x)$, where $r_{n}(x)=\frac{e^{\theta x} x^{n+1}}{(n+1)!}$ and $\theta \in(0,1)$.
For any fixed real x we have $\lim _{x \rightarrow 0} \frac{r_{n}(x)}{x^{n}}=0$ and $\lim _{n \rightarrow \infty} r_{n}(x)=0$, that is $T\left(e^{x} ; 0\right)(x)$
convergent for any real x.
Thus, $T\left(e^{x} ; 0\right)(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}, e^{x}=1+\sum_{k=1}^{n} \frac{x^{k}}{k!}+o\left(x^{n}\right)$ and since
$\left|\frac{e^{\theta x} x^{n+1}}{(n+1)!}\right|=\frac{e^{\theta x}|x|^{n+1}}{(n+1)!}<\frac{e|x|^{n+1}}{(n+1)!}$ then $\left|r_{n}(x)\right|<\frac{e|x|^{n+1}}{(n+1)!}$.
(If $x<0$ then $\left|\frac{e^{\theta x} x^{n+1}}{(n+1)!}\right|=\frac{e^{\theta x}|x|^{n+1}}{(n+1)!}<\frac{e^{0}|x|^{n+1}}{(n+1)!}=\frac{|x|^{n+1}}{(n+1)!}$ and this inequality
convenient for estimation of error of Taylor approximation for e^{x}).
b) Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x=\sin \left(x+\frac{\pi}{2}\right), f^{\prime \prime}(x)=\cos \left(x+\frac{\pi}{2}\right)=$ $\sin \left(x+\frac{\pi}{2}+\frac{\pi}{2}\right)=\sin \left(x+2 \cdot \frac{\pi}{2}\right)$.Assuming $f^{(n)}(x)=\sin \left(x+\frac{n \pi}{2}\right)$ we obtain $f^{(n+1)}(x)=\left(\sin \left(x+\frac{n \pi}{2}\right)\right)^{\prime}=\cos \left(x+\frac{n \pi}{2}\right)=\sin \left(x+\frac{n \pi}{2}+\frac{\pi}{2}\right)=\sin \left(x+\frac{(n+1) \pi}{2}\right)$.
Thus, by MI we proved that $(\sin x)^{(n)}=\sin \left(x+\frac{n \pi}{2}\right), n \in \mathbb{N}$.

$$
\begin{aligned}
& \text { Hence, } f^{(n)}(0)=\sin \frac{n \pi}{2}=\left\{\begin{array}{c}
0 \text { if } n \text { even } \\
1 \text { if } \text { rem }_{4} n=1 \\
-1 \text { if } \operatorname{rem}_{4} n=3
\end{array}\right. \text { and, therefore, } \\
& \quad T_{2 n-1}(f ; 0)(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}, T(f ; 0)(x)= \\
& \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}, \\
& \quad r_{2 n-1}(x)=r_{2 n}(x)=\frac{\sin \left(\theta+\frac{(2 n+1) \pi}{2}\right) x^{2 n+1}}{(2 n+1)!}=\frac{\cos (\theta x+n \pi) x^{2 n+1}}{(2 n+1)!}= \\
& o\left(x^{2 n}\right) .
\end{aligned}
$$

Since $|\cos (\theta+n \pi)| \leq 1$ then $\left|r_{2 n}(x)\right| \leq \frac{|x|^{2 n+1}}{(2 n+1)!}$. So, $T(f ; 0)(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$ convergence to $\sin x$ for any real x.
c) Let $f(x)=\cos x$. Then $f^{\prime}(x)=-\sin =\cos x\left(x+\frac{\pi}{2}\right), f^{\prime \prime}(x)=$ $-\sin \left(x+\frac{\pi}{2}\right)=$
$\cos \left(x+\frac{\pi}{2}+\frac{\pi}{2}\right)=\cos \left(x+2 \cdot \frac{\pi}{2}\right)$.Assuming $f^{(n)}(x)=\cos \left(x+\frac{n \pi}{2}\right)$ we obtain
$f^{(n+1)}(x)=\left(\cos \left(x+\frac{n \pi}{2}\right)\right)^{\prime}=-\sin \left(x+\frac{n \pi}{2}\right)=\cos \left(x+\frac{n \pi}{2}+\frac{\pi}{2}\right)=$ $\cos \left(x+\frac{(n+1) \pi}{2}\right)$.

Thus, by MI we proved that $(\cos x)^{(n)}=\cos \left(x+\frac{n \pi}{2}\right), n \in \mathbb{N}$.
Hence, $f^{(n)}(0)=\cos \frac{n \pi}{2}=\left\{\begin{array}{c}0 \text { if } n \text { odd } \\ 1 \text { if } \operatorname{rem}_{4} n=0 \\ -1 \text { if } \operatorname{rem}_{4} n=2\end{array}\right.$ and, therefore,
$T_{2 n}(f ; 0)(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+(-1)^{n-1} \frac{x^{2 n}}{(2 n)!}, T(f ; 0)(x)=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{x^{2 n}}{(2 n)!}$,
$r_{2 n}(x)=r_{2 n+1}(x)=\frac{\cos \left(\theta x+\frac{(2 n+1) \pi}{2}\right) x^{2 n+2}}{(2 n+2)!}=\frac{\cos (\theta x+n \pi) x^{2 n+2}}{(2 n+1)!}=$ $o\left(x^{2 n+1}\right)$.

Since $|\cos (\theta+n \pi)| \leq 1$ then $\left|r_{2 n}(x)\right| \leq \frac{|x|^{2 n+2}}{(2 n+2)!}$. So, $T(f ; 0)(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n}}{(2 n)!}$ convergence to $\sin x$ for any real x.
d) Let $f(x)=\ln (1+x)$.Then $f^{\prime}(x)=\frac{1}{1+x}, f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=$ $\frac{2}{(1+x)^{3}}$,

$$
f^{(4)}(x)=-\frac{2 \cdot 3}{(1+x)^{4}}, f^{(5)}(x)=\frac{2 \cdot 3 \cdot 4}{(1+x)^{5}}, \ldots, f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}} \text { (Prove }
$$

that by MI)
Hence, $f(0)=0, f^{(n)}(0)=\frac{(-1)^{n-1}}{n}$ and, therefore,
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{(-1)^{n-1} x^{n}}{n}+.$. or $\ln (1+x)=x-\frac{x^{2}}{2}+$ $\frac{x^{3}}{3}+\ldots+\frac{(-1)^{n-1} x^{n}}{n}+r_{n}(x)$
where $r_{n}(x)=o\left(x_{n}\right)=(-1)^{n-1} \frac{n!}{(1+\theta x)^{n+1}}, \theta \in(0,1)$.

Remark. Taylor series for $\ln (1-x)$ without derivatives.

Let $S_{n}(x):=1+x+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x}, x \neq 1$. Since for any $x \in[0,1)$ we have
$\lim _{n \rightarrow \infty}\left(\frac{1}{1-x}-S_{n}(x)\right)=\lim _{n \rightarrow \infty} \frac{x^{n}}{1-x}=0$ then $\sum_{n=1}^{\infty} x^{n-1}=\frac{1}{1-x}$.
We will prove that $\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}, x \in[0,1)$ that is
$-\ln (1-x)=\lim _{n \rightarrow \infty} \int_{0}^{x} S_{n}(t) d t$.
We have $\int_{0}^{x}\left(\frac{1}{1-t}-S_{n}(t)\right) d t=\int_{0}^{x} \frac{t^{n}}{1-t} d t \Longleftrightarrow-\ln (1-t)-\int_{0}^{x} S_{n}(t) d t=$ $\int_{0}^{x} \frac{t^{n}}{1-t} d t \Longleftrightarrow$
$-\ln (1-t)-\sum_{k=1}^{n} \frac{x^{k}}{k}=\int_{0}^{x} \frac{t^{n}}{1-t} d t$.
Since $\int_{0}^{x} t^{n} d t<\int_{0}^{x} \frac{t^{n}}{1-t} d t<\int_{0}^{x} \frac{t^{n}}{1-x} d t \Longleftrightarrow \frac{x^{n+1}}{n+1}<\int_{0}^{x} \frac{t^{n}}{1-t} d t<$
$\frac{x^{n+1}}{(1-x)(n+1)} \Longleftrightarrow$
$\frac{x^{n+1}}{n+1}<-\ln (1-t)-\sum_{k=1}^{n} \frac{x^{k}}{k}<\frac{x^{n+1}}{(1-x)(n+1)}$ and $\lim _{n \rightarrow \infty} \frac{x^{n+1}}{n+1}=\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(1-x)(n+1)}=$
0
then by Squeeze Principle $\lim _{n \rightarrow \infty}\left(-\ln (1-t)-\sum_{k=1}^{n} \frac{x^{k}}{k}\right)=0 \Longleftrightarrow$
$\ln (1-t)=\lim _{n \rightarrow \infty}\left(-\sum_{k=1}^{n} \frac{x^{k}}{k}\right)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
e) Let $f(x)=(1+x)^{\alpha}$, where $\alpha \in \mathbb{R} \backslash \mathbb{N} \cup\{0\}$. Since $f^{(n)}(x)=\alpha(\alpha-1) \ldots(\alpha-n+1)(1+x)^{\alpha-n}$ then $\frac{f^{(n)}(0)}{n!}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$ and denoting $\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$ (like binomial coefficients)
we obtain $(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$ or,
$(1+x)^{\alpha}=\sum_{k=0}^{n}\binom{\alpha}{k} x^{k}+\binom{\alpha}{n+1}(1+\theta x)^{\alpha-n-1} x^{n+1}=\sum_{k=0}^{n}\binom{\alpha}{k} x^{k}+o\left(x^{n}\right)$ (binomial series).

Remark.
Some times calculation $f^{(n)}(0)$ became hard problem or even imposible because can be performed
throug calculation $f^{(n)}(x)$. For example if $f(x)=\arctan x$ then
$f^{\prime}(x)=\frac{1}{1+x^{2}}, f^{\prime \prime}(x)=\left(\frac{1}{1+x^{2}}\right)^{\prime}=\frac{-2 x}{\left(x^{2}+1\right)^{2}}, f^{(3)}(x)=\left(\frac{-2 x}{\left(x^{2}+1\right)^{2}}\right)^{\prime}=$
$\frac{23 x^{2}-1}{\left(x^{2}+1\right)^{3}}$, and so on ..
We can see that complexity grow up.

Problem.

Find Taylor series for $f(x)=\arctan x, \arcsin x, \ln \frac{1+x}{1-x}, \ln \frac{1+x+x^{2}}{1-x+x^{2}} \quad$ (use the following properties
of Taylor operator defined as follows: $\left.(f, a) \longmapsto T_{n}(f)(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}\right)$.
Properties of $T_{n}(f)$

1. $T_{n}(f+g)=T_{n}(f)+T_{n}(g)$;
2. $T_{n}(c f)=c T_{n}(f)$;
3. $D_{x}\left(T_{n}(f)\right)=T_{n-1}\left(f^{\prime}\right)$;
4. $\int_{a}^{x} T_{n}(f)(t) d t=T_{n+1}(F)(x)$, where $F(x)=\int_{a}^{x} f(t) d t$.

Proof.

We have:

$$
\begin{aligned}
& 1 T_{n}(f+g)(x)=\sum_{k=0}^{n} \frac{(f+g)^{(k)}(a)}{k!}(x-a)^{k}=\sum_{k=0}^{n} \frac{f^{(k)}(a)+g^{(k)}(a)}{k!}(x-a)^{k}= \\
& \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\sum_{k=0}^{n} \frac{g^{(k)}(a)}{k!}(x-a)^{k}=T_{n}(f)(x)+T_{n}(g)(x)=\left(T_{n}(f)+T_{n}(g)\right)(x), \\
& 2 . T_{n}(c f)(x)=\sum_{k=0}^{n} \frac{(c f)^{(k)}(a)}{k!}(x-a)^{k}=\sum_{k=0}^{n} \frac{c f^{(k)}(a)}{k!}(x-a)^{k}=c \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}= \\
& c T_{n}(f)(x)
\end{aligned}
$$

3. $D_{x}\left(T_{n}(f)\right)=\left(\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}\right)^{\prime}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}\left((x-a)^{k}\right)^{\prime}=$
$\sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k-1)!}(x-a)^{k-1}=$
$\sum_{k=0}^{n-1} \frac{f^{(k+1)}(a)}{(k-1)!}(x-a)^{k}=T_{n-1}\left(f^{\prime}\right)(x)$.
4. Let $F(x)=\int_{a}^{x} f(t) d t$ then $F(a)=0$ and $\int_{a}^{x} T_{n}(f)(t) d t=\int_{a}^{x}\left(\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(t-a)^{k}\right) d t=$
$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} \int_{a}^{x}(t-a)^{k} d t=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k+1)!}(x-a)^{k+1}=\sum_{k=1}^{n+1} \frac{f^{(k-1)}(a)}{k!}(x-a)^{k}=$
$\sum_{k=1}^{n+1} \frac{F^{(k)}(a)}{k!}(x-a)^{k}$
Note that $o\left((x-a)^{n}\right)+o\left((x-a)^{n}\right)=o\left((x-a)^{n}\right), o\left((x-a)^{n}\right)=o\left((x-a)^{n}\right)$,
$\left(o\left((x-a)^{n}\right)\right)^{\prime}=o\left((x-a)^{n-1}\right)$.

Lemma 3.

Let $\varphi(x)=o\left((x-a)^{n}\right)$ and $\varphi(a)=\varphi^{\prime}(a)=\ldots=\varphi^{(n)}(a)=0$.
Then $\int_{a}^{x} \varphi(t) d t=o\left((x-a)^{n+1}\right)$.

Proof.

Since $\varphi(x):=o\left((x-a)^{n}\right)$ and $\varphi(a)=\varphi^{\prime}(a)=\ldots=\varphi^{(n)}(a)=0$ then $\varphi(x)=g(x)(x-a)^{n}$ and, therefore, $\int_{a}^{x} o\left((t-a)^{n}\right) d t=\int_{a}^{x} g(t)(t-a)^{n} d t=$ $g\left(c_{x}\right) \int_{a}^{x}(t-a)^{n} d t=\frac{g\left(c_{x}\right)}{n+1}(x-a)^{n+1}=$

$$
\frac{1}{n+1} \cdot \frac{g\left(c_{x}\right)\left(c_{x}-a\right)^{n}}{\left(c_{x}-a\right)^{n}} \cdot(x-a)^{n+1}=\frac{1}{n+1} \cdot \frac{\varphi\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}} \cdot(x-a)^{n+1} .
$$

Hence, $\lim _{x \rightarrow a} \frac{\int_{a}^{x} o\left((t-a)^{n}\right) d t}{(x-a)^{n+1}}=\frac{1}{n+1} \lim _{x \rightarrow a} \frac{\varphi\left(c_{x}\right)}{\left(c_{x}-a\right)^{n}}=0 \Longrightarrow \int_{a}^{x} o\left((t-a)^{n}\right) d t=$ $o\left((t-a)^{n+1}\right)$.

Problems.

1. Find limits.
a) $\lim _{x \rightarrow 0} \frac{\cos x-e^{-\frac{x^{2}}{2}}}{x^{4}}$; b) $\lim _{x \rightarrow 0} \frac{a^{x}+a^{-x}-2}{x^{2}}$; c) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$;
d) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x(1+x)}{x^{3}}$; d) $\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x}-\cot x\right)$; e) $\lim _{x \rightarrow 0}\left(x-x^{2} \ln \left(1+\frac{1}{x}\right)\right)$.
2. For which a, b holds $x-(a+b \cos x) \sin x=o\left(x^{5}\right)$.

Estimate errors of the following approximations:
3. a) $\sin x \approx x-\frac{x^{3}}{6},|x| \leq \frac{1}{2} ;$ b) $\tan x \approx x+\frac{x^{3}}{6},|x| \leq 0.1$;
c) $\sqrt{1+x} \approx 1+\frac{x}{2}-\frac{x^{2}}{8}$.
4. For which x holds $\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|<0.0001$.

Additional problems with solutions.

1. Sum of one power series.

Find the sum $\quad \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} x^{n}$.

Solution 1.

Let $S(x):=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} x^{n}$. Since Taylor series for $\frac{1}{\sqrt{1-x}}=(1-x)^{-1 / 2}=$ $1+\sum_{n=1}^{\infty}\binom{-1 / 2}{n}(-x)^{n}$ and
$\binom{-1 / 2}{n}=\frac{(-1 / 2)(-1 / 2-1) \ldots(-1 / 2-n+1)}{n!}=\frac{(-1)^{n}(2 n-1)!!}{2^{n} n!}=\frac{(-1)^{n}(2 n-1)!!}{(2 n)!!}$
then $\frac{1}{\sqrt{1-x}}=1+\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} x^{n}$ and, therefore, $S(x)=\frac{1}{\sqrt{1-x}}-1$.

Solution 2. (Direct, without using Taylor expansion for $\frac{1}{\sqrt{1-x}}$).

Let $T(x)=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n-1}$. Since $\frac{(2 n+1)!!}{(2 n)!!}=\frac{(2 n-1)!!\cdot 2 n}{(2 n)!!}+\frac{(2 n-1)!!}{(2 n)!!}=$
$\frac{(2 n-1)!!}{(2 n-2)!!}+\frac{(2 n-1)!!}{(2 n)!!}$ then $\frac{(2 n-1)!!}{(2 n)!!}=\frac{(2 n+1)!!}{(2 n)!!}-\frac{(2 n-1)!!}{(2 n-2)!!}$ and
$S(x)=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} x^{n}=\sum_{n=1}^{\infty} \frac{(2 n+1)!!}{(2 n)!!} x^{n}-\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n}=$
$\sum_{n=1}^{\infty} \frac{(2 n+1)!!}{(2 n)!!} x^{n}-x \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n-1}=\sum_{n=2}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n-1}-x \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n-1}=$
$T(x)-1-x T(x)=T(x)(1-x)-1$.

Noting that $S^{\prime}(x)=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n-2)!!} x^{n-1}=\frac{1}{2} T(x)$ we obtain
$T(x)=2 S^{\prime}(x)$ and, therefore,
$S(x)=2 S^{\prime}(x)(1-x)-1 \Longleftrightarrow S(x)+1=2(S(x)+1)^{\prime}(1-x) \Longleftrightarrow$
$\frac{(S(x)+1)^{\prime}}{S(x)+1}=\frac{1}{2} \cdot \frac{1}{1-x} \Longleftrightarrow \ln (S(x)+1)=\frac{1}{2} \ln \left(\frac{1}{1-x}\right)+c$.
Since $\ln (S(0)+1)=\ln (0+1)=0$ and $\frac{1}{2} \ln \left(\frac{1}{1-0}\right)=0$ then $c=0$
and, therefore, $S(x)+1=\frac{1}{\sqrt{1-x}} \Longleftrightarrow S(x)=\frac{1}{\sqrt{1-x}}-1$.

2. One limit related to Taylor Formula.

Let $f \in C^{n+1}((-1,1)), f^{(n+1)}(0) \neq 0, n \geq 1$ and for any $x \in(-1,1)$
the value $\theta_{x}=\theta_{x, n}$ is determined as number $\theta \in(0,1)$ such that
$f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\frac{f^{(n)}\left(\theta_{x} \cdot x\right)}{n!} x^{n}$. Find $\lim _{x \rightarrow 0} \theta_{x}$.

Solution.

Since $\left|\theta_{x} x\right|<|x|$ then $\lim _{x \rightarrow 0} \frac{f^{(n)}\left(\theta_{x} \cdot x\right)-f^{(n)}(0)}{\theta_{x} \cdot x}=f^{(n+1)}(0)$.
From the other hand we have $f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\frac{f^{(n)}(0)}{n!} x^{n}+\frac{f^{(n+1)}\left(\theta_{1} \cdot x\right)}{(n+1)!} x^{n+1}$, where $\theta^{\prime}=\theta_{x, n+1} \in(0,1)$
Hence,

$$
\begin{aligned}
& \frac{f^{(n)}\left(\theta_{x} \cdot x\right)}{n!} x^{n}=\frac{f^{(n)}(0)}{n!} x^{n}+\frac{f^{(n+1)}\left(\theta_{1} \cdot x\right)}{(n+1)!} x^{n+1} \Longleftrightarrow f^{(n)}\left(\theta_{x} \cdot x\right)=f^{(n)}(0)+\frac{f^{(n+1)}\left(\theta_{1} \cdot x\right)}{n+1} x \Longleftrightarrow \\
& \quad \frac{f^{(n)}\left(\theta_{x} \cdot x\right)-f^{(n)}(0)}{\theta_{x} \cdot x} \cdot \theta_{x}=\frac{f^{(n+1)}\left(\theta_{1} \cdot x\right)}{(n+1)}
\end{aligned}
$$

Since $f \in C^{n+1}((-1,1))$ then $\lim _{x \rightarrow 0} f^{(n+1)}\left(\theta_{1} \cdot x\right)=f^{(n+1)}(0)$ and, therefore,
$\lim _{x \rightarrow 0} \frac{f^{(n)}\left(\theta_{x} \cdot x\right)-f^{(n)}(0)}{\theta_{x} \cdot x} \cdot \theta_{x}=\frac{1}{(n+1)} \lim _{x \rightarrow 0} f^{(n+1)}\left(\theta_{1} \cdot x\right) \Longleftrightarrow$
$\lim _{x \rightarrow 0} f^{(n+1)}(0) \lim _{x \rightarrow 0} \theta_{x}=\frac{f^{(n+1)}(0)}{(n+1) \theta} \Longleftrightarrow \lim _{x \rightarrow 0} \theta_{x}=\frac{1}{n+1}$.

